Carbon Neutrality: A key to sustainability

Dr. Arshad Husain, FIE Associate Professor Civil Engineering Section University Polytechnic AMU, Aligarh.

Lecture Agenda

Welcome and Introductions
Activity 1: What is your Carbon Footprint?
Activity 2: What is Sustainability?
Activity 3: Hidden Energy: Secondary Carbon Footprints

List the various ways you depend on energy in a typical day.

List the various ways you depend on energy in a typical day.

American Energy Consumption

 Americans consume 40% more energy per person compared to the world average.

> World 5.0 TOE/person

United States 8.35 TOE/person

Where does our energy come from?

Where does our energy come from?

- Fossil fuels (Natural Gas, Oil, Coal)
- Nuclear Power
- Hydropower
- Wind Power
- Solar Power
- Landfill Methane

Renewable Energy

What is the connection between Energy and Carbon Dioxide?

What is the connection between Energy and Carbon Dioxide?

Energy Use

CO₂ makes up approximately 85 percent of total greenhouse gas (GHG) emissions.

What is the connection between Carbon Dioxide and Global Warming?

What human activity produces the most greenhouse gases (CO₂)?

What human activity produces the most greenhouse gases (CO₂)?

- **1. Electricity Generation**
- 2. Transportation
- 3. Industry
- 4. Agricultural
- 5. Commercial
- 6. Residential

Emissions Allocated to Economic Sectors

Electricity Generation:

• Where does your electricity come from?

The average person generates 94 lbs of CO₂ per day.

Activity 1: What is your Carbon Footprint?

Go to EPA's Carbon Footprint Calculator

http://www.epa.gov/climatechange/emissions/ind_calculator.html

 Please complete the companion Carbon Footprint worksheet (provided) as you calculate your carbon footprint.

Carbon Reduction Solutions

What can YOU do to reduce your carbon footprint?

Carbon Reduction Solutions

• Reducing CO₂ emissions benefits:

- The environment
- The economy
- Society

 Practices that benefit all three of these are said to be sustainable.

Sustainability

• Common use of the term "sustainability" began with the 1987 publication of the World Commission on Environment and Development report, *Our Common Future*.

Sustainable Development

 "Development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

– Our Common Future

Three Parts of Sustainability

Is this sustainable?

http://www.chrisjordan.com/

Is it Sustainable?

- Can this activity be done without causing damage in these three areas?
- Can this activity be done so that people in the future will have the same opportunities to do this activity?

Is it Sustainable?

Think-Pair-Share Activity #1

Driving

How does driving impact the: Environment Economy Society

Is it Sustainable?

Choose one: Individual Activities School Activities Government Actions Business Products/Services

Think-Pair-Share Activity #2

Individual activities -Owning/using a mobile phone -Driving above the speed limit -Eating at a restaurant for breakfast -Drinking bottled water at lunch -Shopping at the market	 School activities Hosting a Friday night high school football game Going on a class field trip to the zoo Buying recycled paper for copiers Selling soft drinks in vending machines Allowing students to drive off-campus for lunch
 Government actions Offering roadside trash pick-up Raising the fee to ride public transportation Building an energy efficient court Building sidewalks to the local high school from neighboring areas 	 Business products/services Making computers Producing organic cotton T-shirts Building a 5,000 sq ft. house in the suburbs Building a restaurant on a vacant plot Home delivery of a daily newspaper

Is it Sustainable?

- In your group, assess the sustainability of one activity from this list and determine whether it is economically, environmentally, and/or socially sustainable.
- You need to be able to explain your decision(s) to the group.

Sustainability Scale

Can something that is unsustainable be altered to become more sustainable? Choose an unsustainable activity and explain how it could be made more sustainable.

Three parts of sustainability: *Two Interpretations*

From: http://www.sustainablemeasures.com

Carbon Reduction Solutions

• Reducing CO₂ emissions benefits:

- The environment
- The economy
- Society

 Practices that benefit all three of these are said to be sustainable.

Carbon Reduction Solutions

Individual behaviors and consumer choices impact an individual's carbon footprint.

One Strategy – Eat Local?

Is eating local always better?

- New Zealand raised lamb
 - Pasture-raised
 - 11,000 miles by boat to UK
 - 1,520 lbs CO₂/ton

- UK raised lamb
 - Conventionally grown, feed-reliant
 - 6,280 lbs CO₂/ton

Food Miles versus Lifecycle Assessment

- "Localism is not always the most environmentally sound solution if more emissions are generated at other stages of the product life cycle than during transport."
 - Landcare Research Manaaki Whenua, A New Zealand Environmental Research Organization

Activity 3: Hidden Energy

Everyday Items have Carbon Footprints

Hidden Energy: Secondary Carbon Footprints

- Observe the object in front of you.
- Use the poster paper and markers provided to draw/diagram the materials used to make, market, utilize and dispose of this object.

Hidden Energy

- Consider the following as you observe this object:
 - Raw materials
 - Manufacturing
 - Packaging, transport, and storage
 - Marketing
 - Use/Lifespan
 - Disposal

Hidden Energy

 Finally, indicate the steps on your diagram that use energy and result in CO₂ emissions.

Hidden Energy

- View your object from the perspective of the manufacturer: How can the carbon footprint of your object be reduced?
- View your object from the perspective of the consumer: How can the carbon footprint of your object be reduced?

Hidden Energy In the News

 "Wal-Mart asks Suppliers to Rate Energy Use" *The Wall Street Journal* 25 – 30 companies that supply products such as DVDs, toothpaste, soap, milk, beer, vacuum cleaners, and soda will be asked to measure the amount of energy used to manufacture their products.

• The company wants to cut packaging waste, increase fuel efficiency, and eventually operate entirely on renewable energy.

Hidden Energy & The Informed Consumer

- -Carbon Labeling
- -Sustainability Ratings
- -Eco-labels & Green Certification

Carbon Labeling

Total Carbohydrate

Dietary Fiber

Whole Milk Serving Size 8 fl oz (240mL) Servings Per Container 2

Amount Per Serving				
Calories 15	0 Calori	es from	Fat 70	
		% Dail	y Value"	
Total Fat 8	9		12%	
Saturate	d Fat 5g		25%	
Cholestero	ol 35mg		12%	
Sodium 12	5mg		5%	
Total Carb	ohydrate	a 12g	4%	
Dietary F	iber 0g		0%	
Sugars 1	1g			
CARBON:	1 kg			
Vitamin A 6%	•	Vitam	in C 4%	
Calcium 30%	 Iron 0% 	 Vitamir 	n D 25%	
* Percent Daily	Values are b	ased on a	2,000	
calone diet. Yo	Nor Gaily Val	es may be	nigher	
or lower ouper	Calories:	2.000	2.500	
Total Fat	Less than	650	800	
Sat Fat	Loss than	200	259	
Cholesterol	Less than	300mg	300mg	
Sodium	Loss than	2,400mg	2,400mg	

375g

300

300a

25g

Sustainability Ratings

Carbon Facts

Product Size 1 Cheeseburger (130g)

Amount Per Serving			
Kilograms CO2 Equivalent 3.08 Kilograms CO2 .243 Kilograms CH.	4 .123		
Total C: Energy Sources	243		
Transportation	7460		
Fossil Fuel (Diesel)	1200		
Electricity Production	409		
Fossil Fuel (Natural Gas)	759		
Fossil Fuel (Coal)	Og		
Other			
Total C: Non-Energy Sources 2 Enteric Fermentation 81.0g (Manure 25.8g Other 5.2g	840gCO26 18649CO26 (6569CO26 (1209CO26)		
Carbon/Product Ratio	23.7		
Localism Rating	C+		
Sustainable Production Rating	D+		
overall carbon code: grange			

Eco-Labels & Green Certification

Our Footprint Notre Empreinte

Environmental Impact Impact sur l'environnement		
Energy to Produce: (per pair)* Énergie utilisée (par paire)*	2kWh 2kWh	
Renewable energy (Timberland-owned facilities): L'énergie renouvelable (sites appartenant à Timberland) :	5% 5%	
Community Impact Impact sur la communauté		
Hours served in our communities:	119,776	
Nombre total d'heures données :	119,776	
% of factories assessed against code of conduct:*	100%	
% d'usines évaluées pour leur conformité au code de conduite :*	100%	
Child labor:*	0%	
Main-d'oeuvre enfantine :*	0%	

Manufactured Fabriqué à

Shingtak, China Shingtak, Chine

* metrics based on global footwear production for 2005

* informations fondées sur production totale de chaussures en 2005

FOR MORE INFORMATION VISIT WWW.TIMBERLAND.COM/CSRREPORT POUR PLUS D'INFORMATIONS : WWW.TIMBERLAND.COM/CSRREPORT

Carbon Reduction Solutions

Individual behaviors and consumer choices impact an individual's carbon footprint.

Contact Information

Dr. Arshad Husain, FIE Associate Professor **Civil Engineering Section**, University Polytechnic, Aligarh Muslim University, Aligarh ahusainamu@yahoo.co.in +91 - 9837172120

Thanks